Code:
/ Net / Net / 3.5.50727.3053 / DEVDIV / depot / DevDiv / releases / whidbey / netfxsp / ndp / fx / src / security / system / security / cryptography / BigInt.cs / 5 / BigInt.cs
// ==++== // // Copyright (c) Microsoft Corporation. All rights reserved. // // ==--== // // BigInt.cs // // 11/06/2002 // namespace System.Security.Cryptography { using System.Security.Cryptography.X509Certificates; using System.Text; // // This is a pretty "crude" implementation of BigInt arithmetic operations. // This class is used in particular to convert certificate serial numbers from // hexadecimal representation to decimal format and vice versa. // // We are not very concerned about the perf characterestics of this implementation // for now. We perform all operations up to 128 bytes (which is enough for the current // purposes although this constant can be increased). Any overflow bytes are going to be lost. // // A BigInt is represented as a little endian byte array of size 128 bytes. All // arithmetic operations are performed in base 0x100 (256). The algorithms used // are simply the common primary school techniques for doing operations in base 10. // internal sealed class BigInt { private byte[] m_elements; private const int m_maxbytes = 128; // 128 bytes is the maximum we can handle. // This means any overflow bits beyond 128 bytes // will be lost when doing arithmetic operations. private const int m_base = 0x100; private int m_size = 0; internal BigInt () { m_elements = new byte[m_maxbytes]; } internal BigInt(byte b) { m_elements = new byte[m_maxbytes]; SetDigit(0, b); } // // Gets or sets the size of a BigInt. // internal int Size { get { return m_size; } set { if (value > m_maxbytes) m_size = m_maxbytes; if (value < 0) m_size = 0; m_size = value; } } // // Gets the digit at the specified index. // internal byte GetDigit (int index) { if (index < 0 || index >= m_size) return 0; return m_elements[index]; } // // Sets the digit at the specified index. // internal void SetDigit (int index, byte digit) { if (index >= 0 && index < m_maxbytes) { m_elements[index] = digit; if (index >= m_size && digit != 0) m_size = (index + 1); if (index == m_size - 1 && digit == 0) m_size--; } } internal void SetDigit (int index, byte digit, ref int size) { if (index >= 0 && index < m_maxbytes) { m_elements[index] = digit; if (index >= size && digit != 0) size = (index + 1); if (index == size - 1 && digit == 0) size = (size - 1); } } // // overloaded operators. // public static bool operator < (BigInt value1, BigInt value2) { if (value1 == null) return true; else if (value2 == null) return false; int Len1 = value1.Size; int Len2 = value2.Size; if (Len1 != Len2) return (Len1 < Len2); while (Len1-- > 0) { if (value1.m_elements[Len1] != value2.m_elements[Len1]) return (value1.m_elements[Len1] < value2.m_elements[Len1]); } return false; } public static bool operator > (BigInt value1, BigInt value2) { if (value1 == null) return false; else if (value2 == null) return true; int Len1 = value1.Size; int Len2 = value2.Size; if (Len1 != Len2) return (Len1 > Len2); while (Len1-- > 0) { if (value1.m_elements[Len1] != value2.m_elements[Len1]) return (value1.m_elements[Len1] > value2.m_elements[Len1]); } return false; } public static bool operator == (BigInt value1, BigInt value2) { if ((Object) value1 == null) return ((Object) value2 == null); else if ((Object) value2 == null) return ((Object) value1 == null); int Len1 = value1.Size; int Len2 = value2.Size; if (Len1 != Len2) return false; for (int index = 0; index < Len1; index++) { if (value1.m_elements[index] != value2.m_elements[index]) return false; } return true; } public static bool operator != (BigInt value1, BigInt value2) { return !(value1 == value2); } public override bool Equals (Object obj) { if (obj is BigInt) { return (this == (BigInt) obj); } return false; } public override int GetHashCode () { int hash = 0; for (int index = 0; index < m_size; index++) { hash += GetDigit(index); } return hash; } // // Adds a and b and outputs the result in c. // internal static void Add (BigInt a, byte b, ref BigInt c) { byte carry = b; int sum = 0; int size = a.Size; int newSize = 0; for (int index = 0; index < size; index++) { sum = a.GetDigit(index) + carry; c.SetDigit(index, (byte) (sum & 0xFF), ref newSize); carry = (byte) ((sum >> 8) & 0xFF); } if (carry != 0) c.SetDigit(a.Size, carry, ref newSize); c.Size = newSize; } // // Negates a BigInt value. Each byte is complemented, then we add 1 to it. // internal static void Negate (ref BigInt a) { int newSize = 0; for (int index = 0; index < m_maxbytes; index++) { a.SetDigit(index, (byte) (~a.GetDigit(index) & 0xFF), ref newSize); } for (int index = 0; index < m_maxbytes; index++) { a.SetDigit(index, (byte) (a.GetDigit(index) + 1), ref newSize); if ((a.GetDigit(index) & 0xFF) != 0) break; a.SetDigit(index, (byte) (a.GetDigit(index) & 0xFF), ref newSize); } a.Size = newSize; } // // Subtracts b from a and outputs the result in c. // internal static void Subtract (BigInt a, BigInt b, ref BigInt c) { byte borrow = 0; int diff = 0; if (a < b) { Subtract(b, a, ref c); Negate(ref c); return; } int index = 0; int size = a.Size; int newSize = 0; for (index = 0; index < size; index++) { diff = a.GetDigit(index) - b.GetDigit(index) - borrow; borrow = 0; if (diff < 0) { diff += m_base; borrow = 1; } c.SetDigit(index, (byte) (diff & 0xFF), ref newSize); } c.Size = newSize; } // // multiplies a BigInt by an integer. // private void Multiply (int b) { if (b == 0) { Clear(); return; } int carry = 0, product = 0; int size = this.Size; int newSize = 0; for (int index = 0; index < size; index++) { product = b * GetDigit(index) + carry; carry = product / m_base; SetDigit(index, (byte) (product % m_base), ref newSize); } if (carry != 0) { byte[] bytes = BitConverter.GetBytes(carry); for (int index = 0; index < bytes.Length; index++) { SetDigit(size + index, bytes[index], ref newSize); } } this.Size = newSize; } private static void Multiply (BigInt a, int b, ref BigInt c) { if (b == 0) { c.Clear(); return; } int carry = 0, product = 0; int size = a.Size; int newSize = 0; for (int index = 0; index < size; index++) { product = b * a.GetDigit(index) + carry; carry = product / m_base; c.SetDigit(index, (byte) (product % m_base), ref newSize); } if (carry != 0) { byte[] bytes = BitConverter.GetBytes(carry); for (int index = 0; index < bytes.Length; index++) { c.SetDigit(size + index, bytes[index], ref newSize); } } c.Size = newSize; } // // Divides a BigInt by a single byte. // private void Divide (int b) { int carry = 0, quotient = 0; int bLen = this.Size; int newSize = 0; while (bLen-- > 0) { quotient = m_base * carry + GetDigit(bLen); carry = quotient % b; SetDigit(bLen, (byte) (quotient / b), ref newSize); } this.Size = newSize; } // // Integer division of one BigInt by another. // internal static void Divide (BigInt numerator, BigInt denominator, ref BigInt quotient, ref BigInt remainder) { // Avoid extra computations in special cases. if (numerator < denominator) { quotient.Clear(); remainder.CopyFrom(numerator); return; } if (numerator == denominator) { quotient.Clear(); quotient.SetDigit(0, 1); remainder.Clear(); return; } BigInt dividend = new BigInt(); dividend.CopyFrom(numerator); BigInt divisor = new BigInt(); divisor.CopyFrom(denominator); uint zeroCount = 0; // We pad the divisor with zeros until its size equals that of the dividend. while (divisor.Size < dividend.Size) { divisor.Multiply(m_base); zeroCount++; } if (divisor > dividend) { divisor.Divide(m_base); zeroCount--; } // Use school division techniques, make a guess for how many times // divisor goes into dividend, making adjustment if necessary. int a = 0; int b = 0; int c = 0; BigInt hold = new BigInt(); quotient.Clear(); for (int index = 0; index <= zeroCount; index++) { a = dividend.Size == divisor.Size ? dividend.GetDigit(dividend.Size - 1) : m_base * dividend.GetDigit(dividend.Size - 1) + dividend.GetDigit(dividend.Size - 2); b = divisor.GetDigit(divisor.Size - 1); c = a / b; if (c >= m_base) c = 0xFF; Multiply(divisor, c, ref hold); while (hold > dividend) { c--; Multiply(divisor, c, ref hold); } quotient.Multiply(m_base); Add(quotient, (byte) c, ref quotient); Subtract(dividend, hold, ref dividend); divisor.Divide(m_base); } remainder.CopyFrom(dividend); } // // copies a BigInt value. // internal void CopyFrom (BigInt a) { Array.Copy(a.m_elements, m_elements, m_maxbytes); m_size = a.m_size; } // // This method returns true if the BigInt is equal to 0, false otherwise. // internal bool IsZero () { for (int index = 0; index < m_size; index++) { if (m_elements[index] != 0) return false; } return true; } // // returns the array in machine format, i.e. little endian format (as an integer). // internal byte[] ToByteArray() { byte[] result = new byte[this.Size]; Array.Copy(m_elements, result, this.Size); return result; } // // zeroizes the content of the internal array. // internal void Clear () { m_size = 0; } // // Imports a hexadecimal string into a BigInt bit representation. // internal void FromHexadecimal (string hexNum) { byte[] hex = X509Utils.DecodeHexString(hexNum); Array.Reverse(hex); int size = X509Utils.GetHexArraySize(hex); Array.Copy(hex, m_elements, size); this.Size = size; } // // Imports a decimal string into a BigInt bit representation. // internal void FromDecimal (string decNum) { BigInt c = new BigInt(); BigInt tmp = new BigInt(); int length = decNum.Length; for (int index = 0; index < length; index++) { // just ignore invalid characters. No need to raise an exception. if (decNum[index] > '9' || decNum[index] < '0') continue; Multiply(c, 10, ref tmp); Add(tmp, (byte) (decNum[index] - '0'), ref c); } CopyFrom(c); } // // Exports the BigInt representation as a decimal string. // private static readonly char[] decValues = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'}; internal string ToDecimal () { if (IsZero()) return "0"; BigInt ten = new BigInt(0xA); BigInt numerator = new BigInt(); BigInt quotient = new BigInt(); BigInt remainder = new BigInt(); numerator.CopyFrom(this); // Each hex digit can account for log(16) = 1.21 decimal digits. Times two hex digits in a byte // and m_size bytes used in this BigInt, yields the maximum number of characters for the decimal // representation of the BigInt. char[] dec = new char[(int)Math.Ceiling(m_size * 2 * 1.21)]; int index = 0; do { Divide(numerator, ten, ref quotient, ref remainder); dec[index++] = decValues[remainder.IsZero() ? 0 : (int)remainder.m_elements[0]]; numerator.CopyFrom(quotient); } while (quotient.IsZero() == false); Array.Reverse(dec, 0, index); return new String(dec, 0, index); } } } // File provided for Reference Use Only by Microsoft Corporation (c) 2007. // ==++== // // Copyright (c) Microsoft Corporation. All rights reserved. // // ==--== // // BigInt.cs // // 11/06/2002 // namespace System.Security.Cryptography { using System.Security.Cryptography.X509Certificates; using System.Text; // // This is a pretty "crude" implementation of BigInt arithmetic operations. // This class is used in particular to convert certificate serial numbers from // hexadecimal representation to decimal format and vice versa. // // We are not very concerned about the perf characterestics of this implementation // for now. We perform all operations up to 128 bytes (which is enough for the current // purposes although this constant can be increased). Any overflow bytes are going to be lost. // // A BigInt is represented as a little endian byte array of size 128 bytes. All // arithmetic operations are performed in base 0x100 (256). The algorithms used // are simply the common primary school techniques for doing operations in base 10. // internal sealed class BigInt { private byte[] m_elements; private const int m_maxbytes = 128; // 128 bytes is the maximum we can handle. // This means any overflow bits beyond 128 bytes // will be lost when doing arithmetic operations. private const int m_base = 0x100; private int m_size = 0; internal BigInt () { m_elements = new byte[m_maxbytes]; } internal BigInt(byte b) { m_elements = new byte[m_maxbytes]; SetDigit(0, b); } // // Gets or sets the size of a BigInt. // internal int Size { get { return m_size; } set { if (value > m_maxbytes) m_size = m_maxbytes; if (value < 0) m_size = 0; m_size = value; } } // // Gets the digit at the specified index. // internal byte GetDigit (int index) { if (index < 0 || index >= m_size) return 0; return m_elements[index]; } // // Sets the digit at the specified index. // internal void SetDigit (int index, byte digit) { if (index >= 0 && index < m_maxbytes) { m_elements[index] = digit; if (index >= m_size && digit != 0) m_size = (index + 1); if (index == m_size - 1 && digit == 0) m_size--; } } internal void SetDigit (int index, byte digit, ref int size) { if (index >= 0 && index < m_maxbytes) { m_elements[index] = digit; if (index >= size && digit != 0) size = (index + 1); if (index == size - 1 && digit == 0) size = (size - 1); } } // // overloaded operators. // public static bool operator < (BigInt value1, BigInt value2) { if (value1 == null) return true; else if (value2 == null) return false; int Len1 = value1.Size; int Len2 = value2.Size; if (Len1 != Len2) return (Len1 < Len2); while (Len1-- > 0) { if (value1.m_elements[Len1] != value2.m_elements[Len1]) return (value1.m_elements[Len1] < value2.m_elements[Len1]); } return false; } public static bool operator > (BigInt value1, BigInt value2) { if (value1 == null) return false; else if (value2 == null) return true; int Len1 = value1.Size; int Len2 = value2.Size; if (Len1 != Len2) return (Len1 > Len2); while (Len1-- > 0) { if (value1.m_elements[Len1] != value2.m_elements[Len1]) return (value1.m_elements[Len1] > value2.m_elements[Len1]); } return false; } public static bool operator == (BigInt value1, BigInt value2) { if ((Object) value1 == null) return ((Object) value2 == null); else if ((Object) value2 == null) return ((Object) value1 == null); int Len1 = value1.Size; int Len2 = value2.Size; if (Len1 != Len2) return false; for (int index = 0; index < Len1; index++) { if (value1.m_elements[index] != value2.m_elements[index]) return false; } return true; } public static bool operator != (BigInt value1, BigInt value2) { return !(value1 == value2); } public override bool Equals (Object obj) { if (obj is BigInt) { return (this == (BigInt) obj); } return false; } public override int GetHashCode () { int hash = 0; for (int index = 0; index < m_size; index++) { hash += GetDigit(index); } return hash; } // // Adds a and b and outputs the result in c. // internal static void Add (BigInt a, byte b, ref BigInt c) { byte carry = b; int sum = 0; int size = a.Size; int newSize = 0; for (int index = 0; index < size; index++) { sum = a.GetDigit(index) + carry; c.SetDigit(index, (byte) (sum & 0xFF), ref newSize); carry = (byte) ((sum >> 8) & 0xFF); } if (carry != 0) c.SetDigit(a.Size, carry, ref newSize); c.Size = newSize; } // // Negates a BigInt value. Each byte is complemented, then we add 1 to it. // internal static void Negate (ref BigInt a) { int newSize = 0; for (int index = 0; index < m_maxbytes; index++) { a.SetDigit(index, (byte) (~a.GetDigit(index) & 0xFF), ref newSize); } for (int index = 0; index < m_maxbytes; index++) { a.SetDigit(index, (byte) (a.GetDigit(index) + 1), ref newSize); if ((a.GetDigit(index) & 0xFF) != 0) break; a.SetDigit(index, (byte) (a.GetDigit(index) & 0xFF), ref newSize); } a.Size = newSize; } // // Subtracts b from a and outputs the result in c. // internal static void Subtract (BigInt a, BigInt b, ref BigInt c) { byte borrow = 0; int diff = 0; if (a < b) { Subtract(b, a, ref c); Negate(ref c); return; } int index = 0; int size = a.Size; int newSize = 0; for (index = 0; index < size; index++) { diff = a.GetDigit(index) - b.GetDigit(index) - borrow; borrow = 0; if (diff < 0) { diff += m_base; borrow = 1; } c.SetDigit(index, (byte) (diff & 0xFF), ref newSize); } c.Size = newSize; } // // multiplies a BigInt by an integer. // private void Multiply (int b) { if (b == 0) { Clear(); return; } int carry = 0, product = 0; int size = this.Size; int newSize = 0; for (int index = 0; index < size; index++) { product = b * GetDigit(index) + carry; carry = product / m_base; SetDigit(index, (byte) (product % m_base), ref newSize); } if (carry != 0) { byte[] bytes = BitConverter.GetBytes(carry); for (int index = 0; index < bytes.Length; index++) { SetDigit(size + index, bytes[index], ref newSize); } } this.Size = newSize; } private static void Multiply (BigInt a, int b, ref BigInt c) { if (b == 0) { c.Clear(); return; } int carry = 0, product = 0; int size = a.Size; int newSize = 0; for (int index = 0; index < size; index++) { product = b * a.GetDigit(index) + carry; carry = product / m_base; c.SetDigit(index, (byte) (product % m_base), ref newSize); } if (carry != 0) { byte[] bytes = BitConverter.GetBytes(carry); for (int index = 0; index < bytes.Length; index++) { c.SetDigit(size + index, bytes[index], ref newSize); } } c.Size = newSize; } // // Divides a BigInt by a single byte. // private void Divide (int b) { int carry = 0, quotient = 0; int bLen = this.Size; int newSize = 0; while (bLen-- > 0) { quotient = m_base * carry + GetDigit(bLen); carry = quotient % b; SetDigit(bLen, (byte) (quotient / b), ref newSize); } this.Size = newSize; } // // Integer division of one BigInt by another. // internal static void Divide (BigInt numerator, BigInt denominator, ref BigInt quotient, ref BigInt remainder) { // Avoid extra computations in special cases. if (numerator < denominator) { quotient.Clear(); remainder.CopyFrom(numerator); return; } if (numerator == denominator) { quotient.Clear(); quotient.SetDigit(0, 1); remainder.Clear(); return; } BigInt dividend = new BigInt(); dividend.CopyFrom(numerator); BigInt divisor = new BigInt(); divisor.CopyFrom(denominator); uint zeroCount = 0; // We pad the divisor with zeros until its size equals that of the dividend. while (divisor.Size < dividend.Size) { divisor.Multiply(m_base); zeroCount++; } if (divisor > dividend) { divisor.Divide(m_base); zeroCount--; } // Use school division techniques, make a guess for how many times // divisor goes into dividend, making adjustment if necessary. int a = 0; int b = 0; int c = 0; BigInt hold = new BigInt(); quotient.Clear(); for (int index = 0; index <= zeroCount; index++) { a = dividend.Size == divisor.Size ? dividend.GetDigit(dividend.Size - 1) : m_base * dividend.GetDigit(dividend.Size - 1) + dividend.GetDigit(dividend.Size - 2); b = divisor.GetDigit(divisor.Size - 1); c = a / b; if (c >= m_base) c = 0xFF; Multiply(divisor, c, ref hold); while (hold > dividend) { c--; Multiply(divisor, c, ref hold); } quotient.Multiply(m_base); Add(quotient, (byte) c, ref quotient); Subtract(dividend, hold, ref dividend); divisor.Divide(m_base); } remainder.CopyFrom(dividend); } // // copies a BigInt value. // internal void CopyFrom (BigInt a) { Array.Copy(a.m_elements, m_elements, m_maxbytes); m_size = a.m_size; } // // This method returns true if the BigInt is equal to 0, false otherwise. // internal bool IsZero () { for (int index = 0; index < m_size; index++) { if (m_elements[index] != 0) return false; } return true; } // // returns the array in machine format, i.e. little endian format (as an integer). // internal byte[] ToByteArray() { byte[] result = new byte[this.Size]; Array.Copy(m_elements, result, this.Size); return result; } // // zeroizes the content of the internal array. // internal void Clear () { m_size = 0; } // // Imports a hexadecimal string into a BigInt bit representation. // internal void FromHexadecimal (string hexNum) { byte[] hex = X509Utils.DecodeHexString(hexNum); Array.Reverse(hex); int size = X509Utils.GetHexArraySize(hex); Array.Copy(hex, m_elements, size); this.Size = size; } // // Imports a decimal string into a BigInt bit representation. // internal void FromDecimal (string decNum) { BigInt c = new BigInt(); BigInt tmp = new BigInt(); int length = decNum.Length; for (int index = 0; index < length; index++) { // just ignore invalid characters. No need to raise an exception. if (decNum[index] > '9' || decNum[index] < '0') continue; Multiply(c, 10, ref tmp); Add(tmp, (byte) (decNum[index] - '0'), ref c); } CopyFrom(c); } // // Exports the BigInt representation as a decimal string. // private static readonly char[] decValues = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'}; internal string ToDecimal () { if (IsZero()) return "0"; BigInt ten = new BigInt(0xA); BigInt numerator = new BigInt(); BigInt quotient = new BigInt(); BigInt remainder = new BigInt(); numerator.CopyFrom(this); // Each hex digit can account for log(16) = 1.21 decimal digits. Times two hex digits in a byte // and m_size bytes used in this BigInt, yields the maximum number of characters for the decimal // representation of the BigInt. char[] dec = new char[(int)Math.Ceiling(m_size * 2 * 1.21)]; int index = 0; do { Divide(numerator, ten, ref quotient, ref remainder); dec[index++] = decValues[remainder.IsZero() ? 0 : (int)remainder.m_elements[0]]; numerator.CopyFrom(quotient); } while (quotient.IsZero() == false); Array.Reverse(dec, 0, index); return new String(dec, 0, index); } } } // File provided for Reference Use Only by Microsoft Corporation (c) 2007.
Link Menu
This book is available now!
Buy at Amazon US or
Buy at Amazon UK
- TransportSecurityHelpers.cs
- DataGrid.cs
- DataGridViewCellValidatingEventArgs.cs
- EnumValAlphaComparer.cs
- MemberDescriptor.cs
- WsdlInspector.cs
- DragSelectionMessageFilter.cs
- XmlILCommand.cs
- ExpressionReplacer.cs
- ChangeNode.cs
- DictionaryEntry.cs
- MdiWindowListItemConverter.cs
- ContextItem.cs
- QueryConverter.cs
- Scene3D.cs
- HandoffBehavior.cs
- QueryCreatedEventArgs.cs
- EntityDataSourceWrapperCollection.cs
- WebAdminConfigurationHelper.cs
- ProjectionCamera.cs
- HybridDictionary.cs
- HtmlLink.cs
- RequestTimeoutManager.cs
- AuthenticationSection.cs
- IPipelineRuntime.cs
- COM2Enum.cs
- KeyManager.cs
- PageTheme.cs
- NamedPermissionSet.cs
- XmlSignificantWhitespace.cs
- XmlSchemaImport.cs
- FormViewUpdateEventArgs.cs
- UniqueIdentifierService.cs
- Point3DValueSerializer.cs
- JapaneseLunisolarCalendar.cs
- BufferBuilder.cs
- XsltOutput.cs
- OpCodes.cs
- DesignerAttributeInfo.cs
- Debugger.cs
- columnmapkeybuilder.cs
- xmlNames.cs
- Axis.cs
- ArraySegment.cs
- DynamicMetaObject.cs
- SimpleTypeResolver.cs
- PageBreakRecord.cs
- DescendantQuery.cs
- BitmapData.cs
- TextDecorationCollection.cs
- SerializationStore.cs
- SubclassTypeValidator.cs
- ParameterRetriever.cs
- SerializationFieldInfo.cs
- MemoryFailPoint.cs
- ValueTypeFixupInfo.cs
- XamlStyleSerializer.cs
- HttpListenerPrefixCollection.cs
- TabletDevice.cs
- BaseCollection.cs
- ChannelAcceptor.cs
- BroadcastEventHelper.cs
- GetPageCompletedEventArgs.cs
- BaseCollection.cs
- SqlException.cs
- StringComparer.cs
- ImpersonationContext.cs
- ForceCopyBuildProvider.cs
- XmlFormatReaderGenerator.cs
- ToolStripProgressBar.cs
- Track.cs
- isolationinterop.cs
- RequestQueue.cs
- TableRowCollection.cs
- NavigationWindowAutomationPeer.cs
- TokenBasedSetEnumerator.cs
- SchemaImporter.cs
- ColumnTypeConverter.cs
- DrawingCollection.cs
- XmlSchemaValidationException.cs
- CallbackValidator.cs
- MessageHeaderException.cs
- Parallel.cs
- FragmentNavigationEventArgs.cs
- CapabilitiesSection.cs
- JapaneseLunisolarCalendar.cs
- ContentAlignmentEditor.cs
- Renderer.cs
- AnnotationAdorner.cs
- EntityExpressionVisitor.cs
- ExceptionHandlerDesigner.cs
- WebZone.cs
- TabPanel.cs
- WebPartConnectionsCloseVerb.cs
- JsonCollectionDataContract.cs
- HebrewNumber.cs
- StylusCaptureWithinProperty.cs
- EditBehavior.cs
- WebPartVerb.cs
- MsmqInputChannelBase.cs