Code:
/ 4.0 / 4.0 / DEVDIV_TFS / Dev10 / Releases / RTMRel / wpf / src / Core / CSharp / MS / Internal / Ink / ErasingStroke.cs / 1305600 / ErasingStroke.cs
//------------------------------------------------------------------------ //// Copyright (c) Microsoft Corporation. All rights reserved. // //----------------------------------------------------------------------- //#define POINTS_FILTER_TRACE using System; using System.Windows; using System.Windows.Ink; using System.Windows.Media; using System.Collections.Generic; namespace MS.Internal.Ink { #region ErasingStroke ////// This class represents a contour of an erasing stroke, and provides /// internal API for static and incremental stroke_contour vs stroke_contour /// hit-testing. /// internal class ErasingStroke { #region Constructors ////// Constructor for incremental erasing /// /// The shape of the eraser's tip internal ErasingStroke(StylusShape erasingShape) { System.Diagnostics.Debug.Assert(erasingShape != null); _nodeIterator = new StrokeNodeIterator(erasingShape); } ////// Constructor for static (atomic) erasing /// /// The shape of the eraser's tip /// the spine of the erasing stroke internal ErasingStroke(StylusShape erasingShape, IEnumerablepath) : this(erasingShape) { MoveTo(path); } #endregion #region API /// /// Generates stroke nodes along a given path. /// Drops any previously genererated nodes. /// /// internal void MoveTo(IEnumerablepath) { System.Diagnostics.Debug.Assert((path != null) && (IEnumerablePointHelper.GetCount(path) != 0)); Point[] points = IEnumerablePointHelper.GetPointArray(path); if (_erasingStrokeNodes == null) { _erasingStrokeNodes = new List (points.Length); } else { _erasingStrokeNodes.Clear(); } _bounds = Rect.Empty; _nodeIterator = _nodeIterator.GetIteratorForNextSegment(points.Length > 1 ? FilterPoints(points) : points); for (int i = 0; i < _nodeIterator.Count; i++) { StrokeNode strokeNode = _nodeIterator[i]; _bounds.Union(strokeNode.GetBoundsConnected()); _erasingStrokeNodes.Add(strokeNode); } #if POINTS_FILTER_TRACE _totalPointsAdded += path.Length; System.Diagnostics.Debug.WriteLine(String.Format("Total Points added: {0} screened: {1} collinear screened: {2}", _totalPointsAdded, _totalPointsScreened, _collinearPointsScreened)); #endif } /// /// Returns the bounds of the eraser's last move. /// ///internal Rect Bounds { get { return _bounds; } } /// /// Hit-testing for stroke erase scenario. /// /// the stroke nodes to iterate ///true if the strokes intersect, false otherwise internal bool HitTest(StrokeNodeIterator iterator) { System.Diagnostics.Debug.Assert(iterator != null); if ((_erasingStrokeNodes == null) || (_erasingStrokeNodes.Count == 0)) { return false; } Rect inkSegmentBounds = Rect.Empty; for (int i = 0; i < iterator.Count; i++) { StrokeNode inkStrokeNode = iterator[i]; Rect inkNodeBounds = inkStrokeNode.GetBounds(); inkSegmentBounds.Union(inkNodeBounds); if (inkSegmentBounds.IntersectsWith(_bounds)) { // foreach (StrokeNode erasingStrokeNode in _erasingStrokeNodes) { if (inkSegmentBounds.IntersectsWith(erasingStrokeNode.GetBoundsConnected()) && erasingStrokeNode.HitTest(inkStrokeNode)) { return true; } } } } return false; } ////// Hit-testing for point erase. /// /// /// ///internal bool EraseTest(StrokeNodeIterator iterator, List intersections) { System.Diagnostics.Debug.Assert(iterator != null); System.Diagnostics.Debug.Assert(intersections != null); intersections.Clear(); List eraseAt = new List (); if ((_erasingStrokeNodes == null) || (_erasingStrokeNodes.Count == 0)) { return false; } Rect inkSegmentBounds = Rect.Empty; for (int x = 0; x < iterator.Count; x++) { StrokeNode inkStrokeNode = iterator[x]; Rect inkNodeBounds = inkStrokeNode.GetBounds(); inkSegmentBounds.Union(inkNodeBounds); if (inkSegmentBounds.IntersectsWith(_bounds)) { // int index = eraseAt.Count; foreach (StrokeNode erasingStrokeNode in _erasingStrokeNodes) { if (false == inkSegmentBounds.IntersectsWith(erasingStrokeNode.GetBoundsConnected())) { continue; } StrokeFIndices fragment = inkStrokeNode.CutTest(erasingStrokeNode); if (fragment.IsEmpty) { continue; } // Merge it with the other results for this ink segment bool inserted = false; for (int i = index; i < eraseAt.Count; i++) { StrokeFIndices lastFragment = eraseAt[i]; if (fragment.BeginFIndex < lastFragment.EndFIndex) { // If the fragments overlap, merge them if (fragment.EndFIndex > lastFragment.BeginFIndex) { fragment = new StrokeFIndices( Math.Min(lastFragment.BeginFIndex, fragment.BeginFIndex), Math.Max(lastFragment.EndFIndex, fragment.EndFIndex)); // If the fragment doesn't go beyond lastFragment, break if ((fragment.EndFIndex <= lastFragment.EndFIndex) || ((i + 1) == eraseAt.Count)) { inserted = true; eraseAt[i] = fragment; break; } else { eraseAt.RemoveAt(i); i--; } } // insert otherwise else { eraseAt.Insert(i, fragment); inserted = true; break; } } } // If not merged nor inserted, add it to the end of the list if (false == inserted) { eraseAt.Add(fragment); } // Break out if the entire ink segment is hit - {BeforeFirst, AfterLast} if (eraseAt[eraseAt.Count - 1].IsFull) { break; } } // Merge inter-segment overlapping fragments if ((index > 0) && (index < eraseAt.Count)) { StrokeFIndices lastFragment = eraseAt[index - 1]; if (DoubleUtil.AreClose(lastFragment.EndFIndex, StrokeFIndices.AfterLast) ) { if (DoubleUtil.AreClose(eraseAt[index].BeginFIndex, StrokeFIndices.BeforeFirst)) { lastFragment.EndFIndex = eraseAt[index].EndFIndex; eraseAt[index - 1] = lastFragment; eraseAt.RemoveAt(index); } else { lastFragment.EndFIndex = inkStrokeNode.Index; eraseAt[index - 1] = lastFragment; } } } } // Start next ink segment inkSegmentBounds = inkNodeBounds; } if (eraseAt.Count != 0) { foreach (StrokeFIndices segment in eraseAt) { intersections.Add(new StrokeIntersection(segment.BeginFIndex, StrokeFIndices.AfterLast, StrokeFIndices.BeforeFirst, segment.EndFIndex)); } } return (eraseAt.Count != 0); } #endregion #region private API private Point[] FilterPoints(Point[] path) { System.Diagnostics.Debug.Assert(path.Length > 1); Point back2, back1; int i; List newPath = new List (); if (_nodeIterator.Count == 0) { newPath.Add(path[0]); newPath.Add(path[1]); back2 = path[0]; back1 = path[1]; i = 2; } else { newPath.Add(path[0]); back2 = _nodeIterator[_nodeIterator.Count - 1].Position; back1 = path[0]; i = 1; } while (i < path.Length) { if (DoubleUtil.AreClose(back1, path[i])) { // Filter out duplicate points i++; continue; } Vector begin = back2 - back1; Vector end = path[i] - back1; //On a line defined by begin & end, finds the findex of the point nearest to the origin (0,0). double findex = StrokeNodeOperations.GetProjectionFIndex(begin, end); if (DoubleUtil.IsBetweenZeroAndOne(findex)) { Vector v = (begin + (end - begin) * findex); if (v.LengthSquared < CollinearTolerance) { // The point back1 can be considered as on the line from back2 to the toTest StrokeNode. // Modify the previous point. newPath[newPath.Count - 1] = path[i]; back1 = path[i]; i++; #if POINTS_FILTER_TRACE _collinearPointsScreened ++; #endif continue; } } // Add the surviving point into the list. newPath.Add(path[i]); back2 = back1; back1 = path[i]; i++; } #if POINTS_FILTER_TRACE _totalPointsScreened += path.Length - newPath.Count; #endif return newPath.ToArray(); } #endregion #region Fields private StrokeNodeIterator _nodeIterator; private List _erasingStrokeNodes = null; private Rect _bounds = Rect.Empty; #if POINTS_FILTER_TRACE private int _totalPointsAdded = 0; private int _totalPointsScreened = 0; private int _collinearPointsScreened = 0; #endif // The collinear tolerance used in points filtering algorithm. The valie // should be further tuned considering trade-off of performance and accuracy. // In general, the larger the value, more points are filtered but less accurate. // For a value of 0.5, typically 70% - 80% percent of the points are filtered out. private static readonly double CollinearTolerance = 0.1f; #endregion } #endregion } // File provided for Reference Use Only by Microsoft Corporation (c) 2007. //------------------------------------------------------------------------ // // Copyright (c) Microsoft Corporation. All rights reserved. // //----------------------------------------------------------------------- //#define POINTS_FILTER_TRACE using System; using System.Windows; using System.Windows.Ink; using System.Windows.Media; using System.Collections.Generic; namespace MS.Internal.Ink { #region ErasingStroke ////// This class represents a contour of an erasing stroke, and provides /// internal API for static and incremental stroke_contour vs stroke_contour /// hit-testing. /// internal class ErasingStroke { #region Constructors ////// Constructor for incremental erasing /// /// The shape of the eraser's tip internal ErasingStroke(StylusShape erasingShape) { System.Diagnostics.Debug.Assert(erasingShape != null); _nodeIterator = new StrokeNodeIterator(erasingShape); } ////// Constructor for static (atomic) erasing /// /// The shape of the eraser's tip /// the spine of the erasing stroke internal ErasingStroke(StylusShape erasingShape, IEnumerablepath) : this(erasingShape) { MoveTo(path); } #endregion #region API /// /// Generates stroke nodes along a given path. /// Drops any previously genererated nodes. /// /// internal void MoveTo(IEnumerablepath) { System.Diagnostics.Debug.Assert((path != null) && (IEnumerablePointHelper.GetCount(path) != 0)); Point[] points = IEnumerablePointHelper.GetPointArray(path); if (_erasingStrokeNodes == null) { _erasingStrokeNodes = new List (points.Length); } else { _erasingStrokeNodes.Clear(); } _bounds = Rect.Empty; _nodeIterator = _nodeIterator.GetIteratorForNextSegment(points.Length > 1 ? FilterPoints(points) : points); for (int i = 0; i < _nodeIterator.Count; i++) { StrokeNode strokeNode = _nodeIterator[i]; _bounds.Union(strokeNode.GetBoundsConnected()); _erasingStrokeNodes.Add(strokeNode); } #if POINTS_FILTER_TRACE _totalPointsAdded += path.Length; System.Diagnostics.Debug.WriteLine(String.Format("Total Points added: {0} screened: {1} collinear screened: {2}", _totalPointsAdded, _totalPointsScreened, _collinearPointsScreened)); #endif } /// /// Returns the bounds of the eraser's last move. /// ///internal Rect Bounds { get { return _bounds; } } /// /// Hit-testing for stroke erase scenario. /// /// the stroke nodes to iterate ///true if the strokes intersect, false otherwise internal bool HitTest(StrokeNodeIterator iterator) { System.Diagnostics.Debug.Assert(iterator != null); if ((_erasingStrokeNodes == null) || (_erasingStrokeNodes.Count == 0)) { return false; } Rect inkSegmentBounds = Rect.Empty; for (int i = 0; i < iterator.Count; i++) { StrokeNode inkStrokeNode = iterator[i]; Rect inkNodeBounds = inkStrokeNode.GetBounds(); inkSegmentBounds.Union(inkNodeBounds); if (inkSegmentBounds.IntersectsWith(_bounds)) { // foreach (StrokeNode erasingStrokeNode in _erasingStrokeNodes) { if (inkSegmentBounds.IntersectsWith(erasingStrokeNode.GetBoundsConnected()) && erasingStrokeNode.HitTest(inkStrokeNode)) { return true; } } } } return false; } ////// Hit-testing for point erase. /// /// /// ///internal bool EraseTest(StrokeNodeIterator iterator, List intersections) { System.Diagnostics.Debug.Assert(iterator != null); System.Diagnostics.Debug.Assert(intersections != null); intersections.Clear(); List eraseAt = new List (); if ((_erasingStrokeNodes == null) || (_erasingStrokeNodes.Count == 0)) { return false; } Rect inkSegmentBounds = Rect.Empty; for (int x = 0; x < iterator.Count; x++) { StrokeNode inkStrokeNode = iterator[x]; Rect inkNodeBounds = inkStrokeNode.GetBounds(); inkSegmentBounds.Union(inkNodeBounds); if (inkSegmentBounds.IntersectsWith(_bounds)) { // int index = eraseAt.Count; foreach (StrokeNode erasingStrokeNode in _erasingStrokeNodes) { if (false == inkSegmentBounds.IntersectsWith(erasingStrokeNode.GetBoundsConnected())) { continue; } StrokeFIndices fragment = inkStrokeNode.CutTest(erasingStrokeNode); if (fragment.IsEmpty) { continue; } // Merge it with the other results for this ink segment bool inserted = false; for (int i = index; i < eraseAt.Count; i++) { StrokeFIndices lastFragment = eraseAt[i]; if (fragment.BeginFIndex < lastFragment.EndFIndex) { // If the fragments overlap, merge them if (fragment.EndFIndex > lastFragment.BeginFIndex) { fragment = new StrokeFIndices( Math.Min(lastFragment.BeginFIndex, fragment.BeginFIndex), Math.Max(lastFragment.EndFIndex, fragment.EndFIndex)); // If the fragment doesn't go beyond lastFragment, break if ((fragment.EndFIndex <= lastFragment.EndFIndex) || ((i + 1) == eraseAt.Count)) { inserted = true; eraseAt[i] = fragment; break; } else { eraseAt.RemoveAt(i); i--; } } // insert otherwise else { eraseAt.Insert(i, fragment); inserted = true; break; } } } // If not merged nor inserted, add it to the end of the list if (false == inserted) { eraseAt.Add(fragment); } // Break out if the entire ink segment is hit - {BeforeFirst, AfterLast} if (eraseAt[eraseAt.Count - 1].IsFull) { break; } } // Merge inter-segment overlapping fragments if ((index > 0) && (index < eraseAt.Count)) { StrokeFIndices lastFragment = eraseAt[index - 1]; if (DoubleUtil.AreClose(lastFragment.EndFIndex, StrokeFIndices.AfterLast) ) { if (DoubleUtil.AreClose(eraseAt[index].BeginFIndex, StrokeFIndices.BeforeFirst)) { lastFragment.EndFIndex = eraseAt[index].EndFIndex; eraseAt[index - 1] = lastFragment; eraseAt.RemoveAt(index); } else { lastFragment.EndFIndex = inkStrokeNode.Index; eraseAt[index - 1] = lastFragment; } } } } // Start next ink segment inkSegmentBounds = inkNodeBounds; } if (eraseAt.Count != 0) { foreach (StrokeFIndices segment in eraseAt) { intersections.Add(new StrokeIntersection(segment.BeginFIndex, StrokeFIndices.AfterLast, StrokeFIndices.BeforeFirst, segment.EndFIndex)); } } return (eraseAt.Count != 0); } #endregion #region private API private Point[] FilterPoints(Point[] path) { System.Diagnostics.Debug.Assert(path.Length > 1); Point back2, back1; int i; List newPath = new List (); if (_nodeIterator.Count == 0) { newPath.Add(path[0]); newPath.Add(path[1]); back2 = path[0]; back1 = path[1]; i = 2; } else { newPath.Add(path[0]); back2 = _nodeIterator[_nodeIterator.Count - 1].Position; back1 = path[0]; i = 1; } while (i < path.Length) { if (DoubleUtil.AreClose(back1, path[i])) { // Filter out duplicate points i++; continue; } Vector begin = back2 - back1; Vector end = path[i] - back1; //On a line defined by begin & end, finds the findex of the point nearest to the origin (0,0). double findex = StrokeNodeOperations.GetProjectionFIndex(begin, end); if (DoubleUtil.IsBetweenZeroAndOne(findex)) { Vector v = (begin + (end - begin) * findex); if (v.LengthSquared < CollinearTolerance) { // The point back1 can be considered as on the line from back2 to the toTest StrokeNode. // Modify the previous point. newPath[newPath.Count - 1] = path[i]; back1 = path[i]; i++; #if POINTS_FILTER_TRACE _collinearPointsScreened ++; #endif continue; } } // Add the surviving point into the list. newPath.Add(path[i]); back2 = back1; back1 = path[i]; i++; } #if POINTS_FILTER_TRACE _totalPointsScreened += path.Length - newPath.Count; #endif return newPath.ToArray(); } #endregion #region Fields private StrokeNodeIterator _nodeIterator; private List _erasingStrokeNodes = null; private Rect _bounds = Rect.Empty; #if POINTS_FILTER_TRACE private int _totalPointsAdded = 0; private int _totalPointsScreened = 0; private int _collinearPointsScreened = 0; #endif // The collinear tolerance used in points filtering algorithm. The valie // should be further tuned considering trade-off of performance and accuracy. // In general, the larger the value, more points are filtered but less accurate. // For a value of 0.5, typically 70% - 80% percent of the points are filtered out. private static readonly double CollinearTolerance = 0.1f; #endregion } #endregion } // File provided for Reference Use Only by Microsoft Corporation (c) 2007.
Link Menu

This book is available now!
Buy at Amazon US or
Buy at Amazon UK
- Point3DAnimation.cs
- httpstaticobjectscollection.cs
- ScriptResourceInfo.cs
- Tile.cs
- XmlDocumentSerializer.cs
- Helpers.cs
- ListViewInsertedEventArgs.cs
- ComponentCommands.cs
- Range.cs
- XamlWriter.cs
- NamespaceQuery.cs
- TableItemStyle.cs
- EventToken.cs
- UniqueConstraint.cs
- ModulesEntry.cs
- WindowsFormsLinkLabel.cs
- GregorianCalendarHelper.cs
- View.cs
- APCustomTypeDescriptor.cs
- XmlEntityReference.cs
- StringArrayConverter.cs
- AuthenticateEventArgs.cs
- OrderedDictionary.cs
- CookieParameter.cs
- EntityDescriptor.cs
- VolatileResourceManager.cs
- sitestring.cs
- CacheAxisQuery.cs
- XmlWriterSettings.cs
- SqlProfileProvider.cs
- OdbcParameterCollection.cs
- SafeRightsManagementPubHandle.cs
- CatalogZoneBase.cs
- SQLInt64.cs
- TimelineCollection.cs
- Misc.cs
- DataSourceXmlElementAttribute.cs
- UserPreferenceChangingEventArgs.cs
- QuadraticBezierSegment.cs
- DocumentViewerConstants.cs
- GraphicsContainer.cs
- ProtocolProfile.cs
- OutputCacheProfileCollection.cs
- IndexingContentUnit.cs
- EmbossBitmapEffect.cs
- EventLogException.cs
- SqlSelectClauseBuilder.cs
- ValidationSummary.cs
- DBParameter.cs
- ExtensionDataObject.cs
- XNameConverter.cs
- ConnectionManagementElement.cs
- DefaultShape.cs
- MarkupExtensionParser.cs
- objectquery_tresulttype.cs
- CommandExpr.cs
- EncodingDataItem.cs
- Switch.cs
- SqlCommand.cs
- PropertyDescriptors.cs
- TreeWalker.cs
- TraceContextRecord.cs
- AuthenticationModulesSection.cs
- TypeToTreeConverter.cs
- LogConverter.cs
- StickyNote.cs
- FactoryGenerator.cs
- WindowsToolbar.cs
- DefaultBinder.cs
- CodeRegionDirective.cs
- WinFormsUtils.cs
- GridViewUpdatedEventArgs.cs
- SevenBitStream.cs
- DatatypeImplementation.cs
- ConfigurationPropertyCollection.cs
- PassportAuthenticationModule.cs
- DoubleLinkListEnumerator.cs
- StateDesigner.Helpers.cs
- WebPartActionVerb.cs
- MessageContractImporter.cs
- MetadataUtilsSmi.cs
- XomlCompilerHelpers.cs
- XPathSingletonIterator.cs
- ColumnWidthChangedEvent.cs
- ValueSerializer.cs
- StyleXamlTreeBuilder.cs
- LayoutTableCell.cs
- XPathPatternBuilder.cs
- ScriptRef.cs
- TlsnegoTokenProvider.cs
- MultitargetingHelpers.cs
- FileRegion.cs
- SqlDataSource.cs
- TheQuery.cs
- TextAction.cs
- CodeParameterDeclarationExpressionCollection.cs
- TableLayoutPanelBehavior.cs
- MulticastIPAddressInformationCollection.cs
- DataRecordInfo.cs
- IconBitmapDecoder.cs