Code:
/ Net / Net / 3.5.50727.3053 / DEVDIV / depot / DevDiv / releases / whidbey / netfxsp / ndp / clr / src / BCL / System / Runtime / CompilerServices / RuntimeHelpers.cs / 5 / RuntimeHelpers.cs
// ==++== // // Copyright (c) Microsoft Corporation. All rights reserved. // // ==--== //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // // RuntimeHelpers // This class defines a set of static methods that provide support for compilers. // // Date: April 2000 // namespace System.Runtime.CompilerServices { using System; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Runtime.ConstrainedExecution; using System.Security.Permissions; using System.Threading; public static class RuntimeHelpers { [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern void InitializeArray(Array array,RuntimeFieldHandle fldHandle); // GetObjectValue is intended to allow value classes to be manipulated as 'Object' // but have aliasing behavior of a value class. The intent is that you would use // this function just before an assignment to a variable of type 'Object'. If the // value being assigned is a mutable value class, then a shallow copy is returned // (because value classes have copy semantics), but otherwise the object itself // is returned. // // Note: VB calls this method when they're about to assign to an Object // or pass it as a parameter. The goal is to make sure that boxed // value types work identical to unboxed value types - ie, they get // cloned when you pass them around, and are always passed by value. // Of course, reference types are not cloned. // [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern Object GetObjectValue(Object obj); // RunClassConstructor causes the class constructor for the given type to be triggered // in the current domain. After this call returns, the class constructor is guaranteed to // have at least been started by some thread. In the absence of class constructor // deadlock conditions, the call is further guaranteed to have completed. // // This call will generate an exception if the specified class constructor threw an // exception when it ran. [MethodImplAttribute(MethodImplOptions.InternalCall)] private static extern void _RunClassConstructor(IntPtr type); public static void RunClassConstructor(RuntimeTypeHandle type) { _RunClassConstructor(type.Value); } // RunModuleConstructor causes the module constructor for the given type to be triggered // in the current domain. After this call returns, the module constructor is guaranteed to // have at least been started by some thread. In the absence of module constructor // deadlock conditions, the call is further guaranteed to have completed. // // This call will generate an exception if the specified module constructor threw an // exception when it ran. [MethodImplAttribute(MethodImplOptions.InternalCall)] private static extern void _RunModuleConstructor(IntPtr module); public static void RunModuleConstructor(ModuleHandle module) { unsafe { _RunModuleConstructor(new IntPtr(module.Value)); } } [MethodImplAttribute(MethodImplOptions.InternalCall)] private static extern void _PrepareMethod(IntPtr method, RuntimeTypeHandle[] instantiation); [MethodImplAttribute(MethodImplOptions.InternalCall)] internal static extern void _CompileMethod(IntPtr method); // Simple (instantiation not required) method. [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] public static void PrepareMethod(RuntimeMethodHandle method) { _PrepareMethod(method.Value, null); } // Generic method or method with generic class with specific instantiation. [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] public static void PrepareMethod(RuntimeMethodHandle method, RuntimeTypeHandle[] instantiation) { _PrepareMethod(method.Value, instantiation); } // This method triggers a given delegate to be prepared. This involves preparing the // delegate's Invoke method and preparing the target of that Invoke. In the case of // a multi-cast delegate, we rely on the fact that each individual component was prepared // prior to the Combine. In other words, this service does not navigate through the // entire multicasting list. // If our own reliable event sinks perform the Combine (for example AppDomain.DomainUnload), // then the result is fully prepared. But if a client calls Combine himself and then // then adds that combination to e.g. AppDomain.DomainUnload, then the client is responsible // for his own preparation. [MethodImplAttribute(MethodImplOptions.InternalCall)] [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] public static extern void PrepareDelegate(Delegate d); public static int GetHashCode(Object o) { return Object.InternalGetHashCode(o); } public new static bool Equals(Object o1, Object o2) { return Object.InternalEquals(o1, o2); } public static int OffsetToStringData { get { // Number of bytes from the address pointed to by a reference to // a String to the first 16-bit character in the String. Skip // over the MethodTable pointer, String capacity, & String // length. Of course, the String reference points to the memory // after the [....] block, so don't count that. // This property allows C#'s fixed statement to work on Strings. // On 64 bit platforms, this should be 16. #if WIN32 return 12; #else return 16; #endif } } [MethodImplAttribute(MethodImplOptions.InternalCall)] [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)] public static extern void ProbeForSufficientStack(); // This method is a marker placed immediately before a try clause to mark the corresponding catch and finally blocks as // constrained. There's no code here other than the probe because most of the work is done at JIT time when we spot a call to this routine. [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)] public static void PrepareConstrainedRegions() { ProbeForSufficientStack(); } // When we detect a CER with no calls, we can point the JIT to this non-probing version instead // as we don't need to probe. [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)] public static void PrepareConstrainedRegionsNoOP() { } public delegate void TryCode(Object userData); public delegate void CleanupCode(Object userData, bool exceptionThrown); [MethodImplAttribute(MethodImplOptions.InternalCall)] [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] public static extern void ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData); [PrePrepareMethod] internal static void ExecuteBackoutCodeHelper(Object backoutCode, Object userData, bool exceptionThrown) { ((CleanupCode)backoutCode)(userData, exceptionThrown); } // Roughly equivalent to a CER try/finally that will take a lock, run // the try code, and in the finally block, release the lock. Calls // ExecuteCodeWithGuaranteedCleanup to ensure this will work w.r.t. // stack overflows. // We should consider making this public. [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] [HostProtection(Synchronization=true)] internal static void ExecuteCodeWithLock(Object lockObject, TryCode code, object userState) { ExecuteWithLockHelper execHelper = new ExecuteWithLockHelper(lockObject, code, userState); ExecuteCodeWithGuaranteedCleanup(s_EnterMonitor, s_ExitMonitor, execHelper); } private static TryCode s_EnterMonitor = new TryCode(EnterMonitorAndTryCode); private static CleanupCode s_ExitMonitor = new CleanupCode(ExitMonitorOnBackout); private static void EnterMonitorAndTryCode(Object helper) { ExecuteWithLockHelper execHelper = (ExecuteWithLockHelper) helper; BCLDebug.Assert(execHelper != null, "ExecuteWithLockHelper is null"); BCLDebug.Assert(execHelper.m_lockObject != null, "LockObject is null"); BCLDebug.Assert(execHelper.m_userCode != null, "UserCode is null"); Monitor.ReliableEnter(execHelper.m_lockObject, ref execHelper.m_tookLock); execHelper.m_userCode(execHelper.m_userState); } [PrePrepareMethod] private static void ExitMonitorOnBackout(Object helper, bool exceptionThrown) { ExecuteWithLockHelper execHelper = (ExecuteWithLockHelper) helper; BCLDebug.Assert(execHelper != null, "ExecuteWithLockHelper is null"); BCLDebug.Assert(execHelper.m_lockObject != null, "LockObject is null"); if (execHelper.m_tookLock) Monitor.Exit(execHelper.m_lockObject); } class ExecuteWithLockHelper { internal Object m_lockObject; internal bool m_tookLock; internal TryCode m_userCode; internal object m_userState; internal ExecuteWithLockHelper(Object lockObject, TryCode userCode, object userState) { m_lockObject = lockObject; m_userCode = userCode; m_userState = userState; } } } } // File provided for Reference Use Only by Microsoft Corporation (c) 2007. // ==++== // // Copyright (c) Microsoft Corporation. All rights reserved. // // ==--== //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // // RuntimeHelpers // This class defines a set of static methods that provide support for compilers. // // Date: April 2000 // namespace System.Runtime.CompilerServices { using System; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Runtime.ConstrainedExecution; using System.Security.Permissions; using System.Threading; public static class RuntimeHelpers { [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern void InitializeArray(Array array,RuntimeFieldHandle fldHandle); // GetObjectValue is intended to allow value classes to be manipulated as 'Object' // but have aliasing behavior of a value class. The intent is that you would use // this function just before an assignment to a variable of type 'Object'. If the // value being assigned is a mutable value class, then a shallow copy is returned // (because value classes have copy semantics), but otherwise the object itself // is returned. // // Note: VB calls this method when they're about to assign to an Object // or pass it as a parameter. The goal is to make sure that boxed // value types work identical to unboxed value types - ie, they get // cloned when you pass them around, and are always passed by value. // Of course, reference types are not cloned. // [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern Object GetObjectValue(Object obj); // RunClassConstructor causes the class constructor for the given type to be triggered // in the current domain. After this call returns, the class constructor is guaranteed to // have at least been started by some thread. In the absence of class constructor // deadlock conditions, the call is further guaranteed to have completed. // // This call will generate an exception if the specified class constructor threw an // exception when it ran. [MethodImplAttribute(MethodImplOptions.InternalCall)] private static extern void _RunClassConstructor(IntPtr type); public static void RunClassConstructor(RuntimeTypeHandle type) { _RunClassConstructor(type.Value); } // RunModuleConstructor causes the module constructor for the given type to be triggered // in the current domain. After this call returns, the module constructor is guaranteed to // have at least been started by some thread. In the absence of module constructor // deadlock conditions, the call is further guaranteed to have completed. // // This call will generate an exception if the specified module constructor threw an // exception when it ran. [MethodImplAttribute(MethodImplOptions.InternalCall)] private static extern void _RunModuleConstructor(IntPtr module); public static void RunModuleConstructor(ModuleHandle module) { unsafe { _RunModuleConstructor(new IntPtr(module.Value)); } } [MethodImplAttribute(MethodImplOptions.InternalCall)] private static extern void _PrepareMethod(IntPtr method, RuntimeTypeHandle[] instantiation); [MethodImplAttribute(MethodImplOptions.InternalCall)] internal static extern void _CompileMethod(IntPtr method); // Simple (instantiation not required) method. [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] public static void PrepareMethod(RuntimeMethodHandle method) { _PrepareMethod(method.Value, null); } // Generic method or method with generic class with specific instantiation. [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] public static void PrepareMethod(RuntimeMethodHandle method, RuntimeTypeHandle[] instantiation) { _PrepareMethod(method.Value, instantiation); } // This method triggers a given delegate to be prepared. This involves preparing the // delegate's Invoke method and preparing the target of that Invoke. In the case of // a multi-cast delegate, we rely on the fact that each individual component was prepared // prior to the Combine. In other words, this service does not navigate through the // entire multicasting list. // If our own reliable event sinks perform the Combine (for example AppDomain.DomainUnload), // then the result is fully prepared. But if a client calls Combine himself and then // then adds that combination to e.g. AppDomain.DomainUnload, then the client is responsible // for his own preparation. [MethodImplAttribute(MethodImplOptions.InternalCall)] [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] public static extern void PrepareDelegate(Delegate d); public static int GetHashCode(Object o) { return Object.InternalGetHashCode(o); } public new static bool Equals(Object o1, Object o2) { return Object.InternalEquals(o1, o2); } public static int OffsetToStringData { get { // Number of bytes from the address pointed to by a reference to // a String to the first 16-bit character in the String. Skip // over the MethodTable pointer, String capacity, & String // length. Of course, the String reference points to the memory // after the [....] block, so don't count that. // This property allows C#'s fixed statement to work on Strings. // On 64 bit platforms, this should be 16. #if WIN32 return 12; #else return 16; #endif } } [MethodImplAttribute(MethodImplOptions.InternalCall)] [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)] public static extern void ProbeForSufficientStack(); // This method is a marker placed immediately before a try clause to mark the corresponding catch and finally blocks as // constrained. There's no code here other than the probe because most of the work is done at JIT time when we spot a call to this routine. [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)] public static void PrepareConstrainedRegions() { ProbeForSufficientStack(); } // When we detect a CER with no calls, we can point the JIT to this non-probing version instead // as we don't need to probe. [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)] public static void PrepareConstrainedRegionsNoOP() { } public delegate void TryCode(Object userData); public delegate void CleanupCode(Object userData, bool exceptionThrown); [MethodImplAttribute(MethodImplOptions.InternalCall)] [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] public static extern void ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData); [PrePrepareMethod] internal static void ExecuteBackoutCodeHelper(Object backoutCode, Object userData, bool exceptionThrown) { ((CleanupCode)backoutCode)(userData, exceptionThrown); } // Roughly equivalent to a CER try/finally that will take a lock, run // the try code, and in the finally block, release the lock. Calls // ExecuteCodeWithGuaranteedCleanup to ensure this will work w.r.t. // stack overflows. // We should consider making this public. [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode=true)] [HostProtection(Synchronization=true)] internal static void ExecuteCodeWithLock(Object lockObject, TryCode code, object userState) { ExecuteWithLockHelper execHelper = new ExecuteWithLockHelper(lockObject, code, userState); ExecuteCodeWithGuaranteedCleanup(s_EnterMonitor, s_ExitMonitor, execHelper); } private static TryCode s_EnterMonitor = new TryCode(EnterMonitorAndTryCode); private static CleanupCode s_ExitMonitor = new CleanupCode(ExitMonitorOnBackout); private static void EnterMonitorAndTryCode(Object helper) { ExecuteWithLockHelper execHelper = (ExecuteWithLockHelper) helper; BCLDebug.Assert(execHelper != null, "ExecuteWithLockHelper is null"); BCLDebug.Assert(execHelper.m_lockObject != null, "LockObject is null"); BCLDebug.Assert(execHelper.m_userCode != null, "UserCode is null"); Monitor.ReliableEnter(execHelper.m_lockObject, ref execHelper.m_tookLock); execHelper.m_userCode(execHelper.m_userState); } [PrePrepareMethod] private static void ExitMonitorOnBackout(Object helper, bool exceptionThrown) { ExecuteWithLockHelper execHelper = (ExecuteWithLockHelper) helper; BCLDebug.Assert(execHelper != null, "ExecuteWithLockHelper is null"); BCLDebug.Assert(execHelper.m_lockObject != null, "LockObject is null"); if (execHelper.m_tookLock) Monitor.Exit(execHelper.m_lockObject); } class ExecuteWithLockHelper { internal Object m_lockObject; internal bool m_tookLock; internal TryCode m_userCode; internal object m_userState; internal ExecuteWithLockHelper(Object lockObject, TryCode userCode, object userState) { m_lockObject = lockObject; m_userCode = userCode; m_userState = userState; } } } } // File provided for Reference Use Only by Microsoft Corporation (c) 2007.
Link Menu

This book is available now!
Buy at Amazon US or
Buy at Amazon UK
- ApplicationServicesHostFactory.cs
- DictionaryKeyPropertyAttribute.cs
- NumericUpDownAccelerationCollection.cs
- Set.cs
- XmlBindingWorker.cs
- InternalResources.cs
- MailBnfHelper.cs
- ParseHttpDate.cs
- RemoteWebConfigurationHostStream.cs
- ReferencedAssembly.cs
- ParallelTimeline.cs
- CompilerErrorCollection.cs
- AxisAngleRotation3D.cs
- EnglishPluralizationService.cs
- dsa.cs
- NetworkAddressChange.cs
- IgnoreFileBuildProvider.cs
- VerticalAlignConverter.cs
- AutomationPropertyInfo.cs
- TailPinnedEventArgs.cs
- XmlSchemaAnyAttribute.cs
- TextTreeRootNode.cs
- SystemDropShadowChrome.cs
- GradientStop.cs
- ScriptingSectionGroup.cs
- SpnEndpointIdentity.cs
- PopupRootAutomationPeer.cs
- BaseInfoTable.cs
- ResXBuildProvider.cs
- EarlyBoundInfo.cs
- OrderedHashRepartitionEnumerator.cs
- BitmapEffect.cs
- EasingKeyFrames.cs
- CollectionViewProxy.cs
- MachineKeyConverter.cs
- MiniParameterInfo.cs
- ContainerSelectorActiveEvent.cs
- TreeNodeCollection.cs
- FileLoadException.cs
- XmlBoundElement.cs
- HtmlElementCollection.cs
- MissingMemberException.cs
- Enumerable.cs
- KerberosRequestorSecurityTokenAuthenticator.cs
- ToolStripLocationCancelEventArgs.cs
- GetRecipientListRequest.cs
- Schema.cs
- NativeMethods.cs
- PropertyRef.cs
- RegexNode.cs
- PropertyChangeTracker.cs
- TreeNodeCollection.cs
- WebCategoryAttribute.cs
- XmlTypeAttribute.cs
- InkSerializer.cs
- PackageDigitalSignatureManager.cs
- SharedUtils.cs
- SerTrace.cs
- OutOfProcStateClientManager.cs
- GridViewDeleteEventArgs.cs
- _IPv6Address.cs
- SessionKeyExpiredException.cs
- FileDialogPermission.cs
- SqlProviderManifest.cs
- Stream.cs
- SemanticKeyElement.cs
- DirectoryNotFoundException.cs
- CipherData.cs
- IPAddressCollection.cs
- UserControlCodeDomTreeGenerator.cs
- CreateCardRequest.cs
- PrivilegeNotHeldException.cs
- ExpressionEditor.cs
- HexParser.cs
- GrammarBuilderPhrase.cs
- CdpEqualityComparer.cs
- FSWPathEditor.cs
- InputBinding.cs
- PlainXmlDeserializer.cs
- Utils.cs
- Blend.cs
- BuildResult.cs
- QueryResult.cs
- MemberPath.cs
- TreeNodeStyleCollection.cs
- ColorAnimationBase.cs
- EmbossBitmapEffect.cs
- MetadataException.cs
- NativeMethods.cs
- EditorZoneBase.cs
- MetadataCacheItem.cs
- ClrProviderManifest.cs
- SR.cs
- FacetChecker.cs
- ObsoleteAttribute.cs
- DecoderFallback.cs
- propertytag.cs
- PolicyManager.cs
- AlgoModule.cs
- QuadraticBezierSegment.cs